Glicci Ideals
نویسندگان
چکیده
A central problem in liaison theory is to decide whether every arithmetically Cohen-Macaulay subscheme of projective n-space can be linked by a finite number of arithmetically Gorenstein schemes to a complete intersection. We show that this can be indeed achieved if the given scheme is also generically Gorenstein and we allow the links to take place in an (n + 1)-dimensional projective space. For example, this result applies to all reduced arithmetically Cohen-Macaulay subschemes. We also show that every union of fat points in projective 3-space can be linked in the same space to a union of simple points in finitely many steps, and hence to a complete intersection in projective 4-space.
منابع مشابه
Monomial Ideals and the Gorenstein Liaison Class of a Complete Intersection
In an earlier work the authors described a mechanism for lifting monomial ideals to reduced unions of linear varieties. When the monomial ideal is Cohen-Macaulay (including Artinian), the corresponding union of linear varieties is arithmetically CohenMacaulay. The first main result of this paper is that if the monomial ideal is Artinian then the corresponding union is in the Gorenstein linkage ...
متن کاملSymmetric Ladders and G-biliaison
We study the family of ideals generated by minors of mixed size contained in a ladder of a symmetric matrix from the point of view of liaison theory. We prove that they can be obtained from ideals of linear forms by ascending G-biliaison. In particular, they are glicci.
متن کاملGlicci Simplicial Complexes
One of the main open questions in liaison theory is whether every homogeneous Cohen-Macaulay ideal in a polynomial ring is glicci, i.e. if it is in the G-liaison class of a complete intersection. We give an affirmative answer to this question for StanleyReisner ideals defined by simplicial complexes that are weakly vertex-decomposable. This class of complexes includes matroid, shifted and Goren...
متن کاملLiaison of Monomial Ideals
We give a simple algorithm to decide whether a monomial ideal of nite colength in a polynomial ring is licci, i.e., in the linkage class of a complete intersection. The algorithm proves that whether or not such an ideal is licci does not depend on whether we restrict the linkage by only allowing monomial regular sequences, or homogeneous regular sequences, or arbitrary regular sequences. We app...
متن کاملG-biliaison of Ladder Pfaffian Varieties
The ideals generated by pfaffians of mixed size contained in a subladder of a skew-symmetric matrix of indeterminates define arithmetically Cohen-Macaulay, projectively normal, reduced and irreducible projective varieties. We show that these varieties belong to the G-biliaison class of a complete intersection. In particular, they are glicci.
متن کامل